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A new technique is described for solving supersonic fluid dynamics problems containing multiple regions of
continuous flow, each bounded by u permeable or Impermeable surface. Region boundaries are, in general,
arbitrarily shaped and time dependent. Discretizatlon of such a region for solution by conventional finite dif-
ference procedures Is accomplished using an elliptic solver which alleviates the dependence on a particular base

coordinate system. Multiple regions are coupled together through the boundary conditions. The technique has
been applied to a variety of problems Including a shock diffraction problem and supersonic flow over a pointed

ogive.
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Nomenclature t

U, V

= coefficients used in matrix S x,y
= error norm in integrated Jacobian

= total energy per unit volume _,fl

=//-flux vector r,,F_,F_
= x-flux vector

= grid operator 7

= rl- fiux vector 5'
=y-flux vector A
= inverse Jacobian

= Jacobian dt

= shock Mach number
=G-forcing function for grid and grid speed

equations r/,
= static pressure p
='0-forcing function for grid and grid speed r

equations V
=scaled solution vector, dependent variable o.

vector
= solution vector, dependent variable vector Subscripts

= right-hand side of linear grid speed equation g

=coefficient operator of linear grid speed

equation j,k

=positive shift operator indicating a forward t,x,y,_,_,r

shift on j-index (i.e., S j_[¢j., ] = ¢bj÷ j.k )
= negative shift operator indicating a backward _r/,_//

shift on j-index (i.e., S j-[C_j,,] = tbj- i,k )
= positive shift operator indicating a forward /_T/

shift on k-index (i.e., S_j.k I= 6z*+i ) Superscripts
= negative shift operator indicating a backward

shift on k-index (i.e., S_¢j.k] = _j,k-i ) a,b
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= time '

= x,y velocity components, respectively
= Cartesian coordinates

= grid speed vector

= coefficients in grid and grid speed operators

=r, Ln direction finite-difference operators,

respectively

= coefficient in grid and grid speed operators

= ratio of specific heats

= forward difference operator or denotes in-
cremental value

= central difference operator

=upper bound for error norm in integrated
Jacobian

= general curvilinear coordinates

= density

= general curvilinear marching coordinate

= backward difference operator
= infinity

=indicates association with actual finite-

difference grid

= indices in _,_ directions, respectively

=partial differentiation with respect to this

independent variable

= second partial derivative with respect to this

independent variable

= cross partial derivative

=used to identify two numerical represen-

tations of the same metric quantity
= marching direction index

Introduction

HE electronic revolution, which undoubtedly is still in its
infancy, has given man an incredibly powerful tool with

which to solve many of the problems fac_.d in today's highly

technological society. This paper deals with the application of

this tool, the high-speed digital computer, to problem solving
in fluid dynamics.

Since the advent of the high-speed digital computer, an

extensive effort has been made toward obtaining solutions to
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fluid dynamics problems for which there exists a concise
mathematical treatment resulting in a system of equations and

boundary conditions describing an approximation to various

physical processes. Many different mathematical descriptions

exist depending upon the nature of the assumptions inherent
to the derivation. The present work concentrates on fluid

dynamics problems in which the flow is assumed to have a

compressible, nonviscous nature. Such flow problems are
adequately described by the Euler equations. An additional

simplification (not restriction) which is made in the present
work is that of two-dimensional flow.

There are many computer codes in existence for solving the

two-dimensional Euler equations.l-3 Unfortunately, each of

them was written with a particular class of problems in mind.

This places restrictions on the range of applicability of any

computer code. Such restrictions may be categorized as those

pertaining to the physics of the flow itself and those per-
taining to the problem geometry description. These two

categories are not necessarily independent. The former

category includes such things as the development of flow

singularities, discontinuities, or steep gradients for which

there is inadequate numerical treatment. The latter category

involves the manner in which the flowfield grid point

distribution is defined relative to a base coordinate system.
For example, a typical restriction of this type arises when a

shock boundary is defined in Cartesian variables as

x s =x, (y,t) and possibly due to some interaction process, the

shock slope, 0x,/ay, becomes unbounded at some point. This

difficulty can certainly be remedied in a given situation by a

coordinate rotation or some other trick, but in the general

case, any such trick, which may well require extensive code

modification, will undoubtedly have similar limitations of its

own. It is the purpose of this research effort to remove some

of these restrictions by developing a generalized two-

dimensional Euler equation solver using a modular approach

and a very general treatment of the module geometry, thus

providing one computer code capable of solving a wide

variety of two-dimensional fluid dynamics problems.

Modular Approach

Although the present approach and the resulting computer

code are in no way limited to supersonic flow problems, such
problems do provide a more extensive test of the general

concepts developed. As a result, the discussion presented

herein will tend to emphasize the application of the present
approach to supersonic flow.

Many steady and unsteady supersonic flow problems

contain multiple regions of continuous flow, each of which is

either bounded by a surface across which the flow is

discontinuous such as shock waves or slip surfaces or

bounded by an impermeable surface such as the body. The

present effort is to develop a computational solver which is

designed to compute the solution to the Euler equations in an
arbitrary region or module. The complete flow problem may

consist of many of these modules coupled together through

the appropriate application of boundary condition

procedures. For example, the single Mach reflection planar

shock diffraction problem shown in Fig. 1 may be described

with two modules. These modules share a slip surface as a

common boundary.

Since the present approach requires that the flow module

boundaries also be computational boundaries a generalized

mapping of the independent variables must be performed (see

Fig. 2). It is clear that in the general case these module

boundaries are time-varying in nature. Such boundaries must

therefore be capable of assuming virtually any shape dictated

by the governing equations. Consequently, it is especially
important that there is no built-in dependence of the validity

of the module geometry description (grid point distribution

and movement) on the particular base coordinate system

chosen as a reference frame. The unique manner in which the

present technique avoids such dependence is described in a
later section.

_f-- Incident
Slip / Shock

Physical Plane
Shock-Diffraction Problem

ComputationalPlane

Two-Solver-Net

Fig. l Conceptual network of solvers.

A literature search reveals that while extensive information

exists on the idea of patching together of solutions, for

example in boundary layer-inviscid interactions, etc., very

little information is available on the present modular type of
approach. Ludloff and Friedman 4 solve the Mach reflection

planar shock diffraction problem with what is apparently two

modules although they do not specifically indicate such an

approach.
In contrast to the lack of information available on the

modular type approach, considerable information is available

on the subject of generalized geometry. Various types of

automatic grid generation procedures have been developed 5-_

some of which have been applied to domains with moving
boundaries, t.12.ts The present approach uses the automatic

grid generation procedure of Thompson et al. s and extends it

in a unique way to allow for domains with time varying as

well as arbitrarily shaped boundaries.

Governing Equations

The two-dimensional unsteady Euler equations are written
in conservation-law form in Cartesian coordinates as

a,_ af. a_

where _, f, g are given by

pu
• f=

pU

p+pu _

puv

(p+e)u

,g=
puv

t. (p+e)vJ

with (u,v) representing the Cartesian (x,y) velocity com-
ponents, p the density, p the static pressure, and e the total

energy per unit volume, e is related to p,p,u,v through the
equation

P P

e= $-:7 + 2 (u2 +v_)

where 5' is the ratio of thermal capacities of the fluid.

Cartesian coordinates are used as the base coordinate
system but in order to map bodies and other surfaces onto

constant coordinate lines, the following coordinate mapping
is introduced (see Fig. 2):

"r=t, _ =_(t,x,y), n=_(t,x,y) (2)

I
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T-I

_,. _,ct,_ y)

• _1 (I, x, y)

Ph sical Plane

Compulati0na] Plane

Fig. 2 Tr_,nsfonnalion o!' physical plane to ¢ompulational plgne for
singlesolver.

The governing equations, Eq. (I), are transformed by this

mapping according to Viviand t6 into a new strong con-
servation-law form written as

where

a0 aP aO
a-;+ _ + _ =o (3)

O=x4

_e=l(f,#+ _j+ f,g)

O=I(,7,#+ ,J+ 'bD (4)

and

1

I= x_ y_ - x_y_ = _I

J= fxny - fy_x

where J is the Jacobian of the mapping and I is the Jacobian
of the inverse mapping. The metrics of the mapping are
related to the metrics of the inverse mapping by the equations

If, =y,x_--x,y_, If x=y_, Ify= -X_

Irlt=x,y_-y,x_, l_x=-yt, I_y=x_ (5)

Using Eq. (5), Eq. (4) is rewritten as

F= (y,x_ - x,y_ )_ +y J- x.

d = (x,y_ -y,x_ )t_-yJ+x_, (6)

Geometry

There appears to be no universal procedure in the literature
for treating the metric and Jacobian terms appearing in Eq.
(6). This section, therefore, attempts to identify some logical
ground rules which are followed in the treatment of these
terms. The concepts involved are more completely discussed
by Steger. _ The rules stem from accuracy considerations and
are based on the intuitive suggestion that for a scheme to be

considered acceptable, the flowfield code which it supports
must be capable of exact reproduction of a uniform flow.

That is, with the boundary values held fixed at some uniform
flow conditions and the initial flowfield set to these same

conditions, the finite difference algorithm should exactly
reproduce this same flowfield for all time. This is actually a
statement of the independence that should exist between the
physical flow and the grid distribution for the case of uniform

flow. It provides a simple test for an existing numerical
algorithm and a criterion which ties down many of the
questions arising in code development work regarding the
manner in which the metrics of Eq. (6) should be computed.

Consider the expanded form of Eq. (3);

a--r- + [ (y,.x,-x,yn)ct+yJ--x,g]

0
+ V?_[ (x,y_ - y,x_ ) _ - y J+ x_ 9] = 0 (7)

Replace O/Or, B/Of, 0/07 by some finite difference operators,
say

0

resulting in

r, [I#] + p_ [0,,x_ -x,y_ ) 0]+ r, [ (x,y_ -y,x_ )#1

+r_iy_+r.l-yt_+r_l-x_$]+r, lxt:_]=o (8)

where the superscripts a and b appearing on the metric terms
are used for later reference to identify two different numerical
representations of the same quantity. Now for a uniform
flow, since f=f(_), g=_(t_), and it is required that

t_ = constant throughout the flowfield for all time, then

and the following conditions result:

r,li]+r_b,,x_-x,y_l+r_[x,y_-y,x[]=o (9)

r_ Lye]- r. [y_]= o (lo)

r_l-r,[_]--o Ol)

Note that the differential analogs of these equations are

simply identities for a well behaved mapping. Clearly, Eqs.

(10) and (11) are satisfied if the metrics are differenced with

the same operators as those used in the finite difference

scheme. Equation (9), however, is a numerical representation
of an identity coined by Thomas and Lombard _ as the

geometric conservation law (GCL). It says that the GCL

equation

Conservation-law form of the governing equations is
necessary according to Lax ,7 to ensure that the jump con-
ditions existing across weak solutions are automatically

satisfied. This form of the governing equations thus adds a
shock capturing capability to the resulting computer code.

¢9I 8 8

+ _ [v,x_ -x,y_] + _ [x,y_ -y,x_] = 0 (12)Or

must be differenced in an identical manner to the flow

equations, Eq. (7). This result is nontrivial only in the case of
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a time varying grid. Thomas and Lombard js reached the
same conclusion with consistency arguments and analogy with
finite volume methods. It must be pointed out, however, that
conditions (9-11) insofar as the present effort is concerned are
strictly a result of choosing the strong conservation law
representation of the governing equations. If the weak
conservation-law equations had been chosen, a different set
of conditions would result, this time for the differencing of
the metric gradients appearing in the source terms. The use of
the nonconservative form of the equations results in no
special geometry differencing requirements whatsoever.

Thus far two sets of metric values have been identified.

They are referred to as a-metrics and b-metrics based on their
superscript. Conditions (10) and (11) dictate the manner in
which the b-metrics are to be computed. However, the
calculation of the a-metrics is still a free choice. Although the
two sets represent the same physical quantities, they need not
be numerically equivalent. In fact, it is shown in a subsequent
section that the manner in which the a-metrics are computed is
dictated by the accuracy with which the integrated Jacobian
value, I, resulting from Eq. (9), represents the actual Jacobian
of the mapping.

The calculation of the metrics requires knowledge of the
coordinates (x,y) of each grid point. Determination of these
coordinates and the speed with which the points move (x,,y,)
is the subject of the next section.

Grid and Grid Speed Operators

In order to determine the metric quantities, the coordinates
(x,y) of each grid point must be known. Also, grid point
speeds (x,,y,) are required to advance both the flow solution
and the Jacobian [Eqs. (7) and (12)] in time. Due to the time
varying nature of the grid botmdaries, the location and speed
of each interior grid point are necessarily dependent upon the
location and speed of the boundary points. Two methods for
obtaining such dependence are now described. This elliptic-
type dependence may be obtained for the grid by following the
approach of Thompson et al.5 Given the boundary point
coordinates (x,y), the interior grid point coordinates are
required to satisfy the nonlinear elliptic coupled partial
differential equations

G[x]=O, GLv]=O (13)

with specified boundary values, where

a2 o_ a_

a
(14)

where

_=x_ +y_ (15)

=x_xn + y_y_ (16)

T=X_ +y_ (17)

The forcing functions P(r,/L_) and Q(r,_,_) are used to
concentrate the grid lines where they are most needed. For the
present study these functions are set to zero.

The requirement that the coordinates (x,y) satisfy Eq. (13)
plus boundary conditions allows determination of the grid.
However, the grid speed values are still unknown on the
interior points. The boundary point speeds are assumed
known since these values typically represent the speed of
shock points, etc., which are determined from the flow
solution. Interior values for (x,,y,) could, of course, be
obtained with backward finite differences but this requires
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extra information at the initial data surface and may be in-
consistent with the scheme used to advance the boundary
point locations in time. In addition, the solution to Eq. (13)
must be iterative due to the nonlinearity of the operator, G.
Another approach, and the one used in the present study, is to
differentiate Eqs. (13) with respect to r which, for a one-to-
one mapping, yields the equation

S[_l=: 08)

where

Z,= (x,,y,)

P = -12 (P,x_ + Q,x_, P_y_ + Q,y_ ) (19)

S _

and

C I (r._._) =2(x_x_ -x_x_ +l(Px_ +Qx_ )y_)

C 2 (r._._l) =2(x_x_ -x_x_ -I(Px_ + Qxn )y_ )

cs ( r. _.77) = 2 (x_,y_ -x_,y, - I(Px{ + Qx_ )x, )

C, ( _,_,_1) = 2 (x_y_ - x_sy _+ l ( Px_ + Qx_ )x_ )

C+ (r,+,+) =2(y++x+ -y_,x_ + I(Py+ + Q_y+)y+)

Ce (r,_,_l) =2(y_x_ -y_x_ -I(Py_ + Qy_ )y_ )

C z (_,//,'q) =2 (y_y_ -y_,y_ - l(Py_ + Qy_ )x_ )

Cs (r,_,_) =2(y_y, -y_,y_ +I(Py_ + (pO,,)x_ ) (20)

Once the coordinates (x,y) are known at each grid point,
the metric quantities and their derivatives may be obtained
with finite differences. The result is that the system of partial
differential equations represented by Eq. (18) is linear in the
dependent variables (x,,y,) with known variable coefficients
and a direct method of solution to its finite difference
representation may be employed to determine (x,,y,) at all
interior points when given the boundary point speeds. In
addition, the grid-point locations may be determined from a
simple time integration of these computed speeds rather than
by solving the nonlinear system, Eq. (13). This point is
discussed in the next section.

Coupling of Geometry Treatment and
Finite Difference Scheme

Several points are considered in this section involving the
accuracy of the procedures developed. This accuracy is in-
timately connected to the coupling which exists between the
finite difference scheme chosen to integrate the governing
equations and the treatment of the geometry. MacCormack's
standard unsplit predictor-corrector scheme _9 is used to
integrate fhe flow equations, Eq. (7), and the GCL equation,
Eq. (12), in time. Application of this scheme yields the
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corresponding finite-difference equations:

Predictors

-- AT
n___ A X ¢ a " b b- n(I4)'÷_=(I4) At j[(y, _-x,y,)q+y_f-x_g]

AT

-_ A k [ (x.y_ " x a_;" "b?+ Xbnl" (21)

AT
a a n_ Ar A [x,y__y, xa]nIn+' =r- _ aj [y,x,-x,y,l a-_

(22)

where 6 denotes the central difference operator and S denotes
the shift operator, then

e=0{Ar _, Ar2A/_, A¢2AT/]

This is a higher order than the accuracy of the numerical

determination ofl_ *1 from the formula

l$+l =_j[Xn+l]6k[y "+1 ] --_y[y'+l]r_k[X'+l ] (29)

An additional result of obtaining (x,y) n+l from Eqs. (25)
and (26) is that

IG'+l[x "+1]i=e!, IG'+l[y "+l]l=e 2

Correctors

1 I Ar(I¢) "+1= _ (/¢) _¥_ + (I¢)" - _ vii (y,x_-x,y_)¢

A--_v k

a a b b
x [(x,Yt; -y,x_)O-yJ+xd_] 1 (23)

I'+ ! = 1 [i_-_t + i n- A¢ a X a_ vj Iy,x, - ,y, ]

-- A'--_V, [xry[--yrx*]
(24)

where A, V are the usual forward and backward finite-

difference operators.
The value of I n+l obtained from Eq. (24) must accurately

reflect the true grid structure at n + 1. The grid must therefore

be advanced in time in such a way that the Jacobian, I". +1, as

computed with finite differences from the new grid" point
locations, (x,y)'+_, is an accurate representation of 1 "+1.
That is

E=|I_*!-I'+!I<¢

where e is a small number. Two methods exist for controlling

the order of _. The manner in which the new grid is obtained
n+l

from a time integration controls the value of !_ and the
manner in which the a-metrics in Eqs. (21-24) are treated
controls the value of I "+1. It is shown by Hindman _° that if

the grid is advanced in time by the Euler predictor-modified
Euler corrector scheme,

x "+I =x" + Arx7

y,+_ =yn +Ary_ (25)

• X'+I__ 1//2 (X n +xn+ 1 + ATxn+I)

y.+t= ½ (y" +y'+l +Ary_+t) (26)

and the a-metrics are differenced as (with A_ = A_ = 1)

_" = _ Sflx _ ],

xf = _jSzIx _ ],

_+1=*kS/Ix_ ],

=_jSttx_l,

y( = _ s fty" 1

y_n = _/Sf[y" ] (27)

,,,"+Cx ¢ +t,,_]

,,o'+ _- x _ +r,,_'_ _ (28)

where e_.2-0(ArJ). That is (x,y) at the new time are very
accurate representations of the values obtained by solving Eq.

(13) at n + 1. This fact provides some assurance that the grid
will remain nicely structured as it moves in time.

Algorithm

The algorithm for applying the preceding procedures to an
arbitrary module is described in the following 15 steps. A

priori knowledge of the initial boundary point locations and

their speeds, and the initial flow solution, 4 _, is assumed.

I) Given (x',y') at all boundary points, compute (x_,y _)

at all interior points initially by solving the coupled equations
G n [x _] =0, G"[.v'l =0.

2) Compute the a-metrics from Eq. (27).

3) Compute the b-metrics from

b n
y_ =Ak[y']. X,_n=Ak[x "]

bn n
y+ =a_ly"]. _ =zX_tx"]

4) Given (x,,y,) at all boundary points, compute (x,,y,)
at all interior points by solving Eq. (18).

5) Compute the Jacobian I" from the equation,

l" =I_ =_i [X" ] $+ [yn] __ [Xn]$j [yn]

6) Apply Eels. (21) and (22) to yield (14) n+t and I n+_ at all

interior grid points. (Special difference equations are used at

boundary points.)

7) Apply Eq. _ to yield (x"+_,__ "+t) at all grid points.

8) Compute 4"+_= (14)'+_/I "+1 and____appl__ boundary

conditions to obtain the boundary speed er" + t n+,-, ,y, ) (i.e.,

shock speed, etc.).

9) Compute a-metrics from Eq. (28).

10) Compute b-metrics from

bn+ l bn+ l --
y_ =V_[y_-;')], x_ =V+[x n+l]

y_'+_ = vj [y.+1]. x_"+1 = vj [x _-_]

1_ Given (x'_+l,y_, +_) at all boundary points, compute
n+l n+lix, , y,_%-_)at all interior points by solving Eq. (18).
12) Apply Eqs. (23) and (24) to yield (I4)"+1, i'+1 at all

interior grid points. (Special difference equations are used at
boundary points.)

13) Apply Eq. (26) to yield (x" + _, y _+ 1) at all grid points.
14) Compute dl"+t = (14)"+I/I"+_ and apply boundary

conditions to correct 4 "+_ and provide (x7 ÷t, "+1y, ) on the
boundaries.

15) Go to step 2.

Initial and Boundary Conditions

Initial Conditions

The techniques developed in the present effort revolve

around the concept of generality. The determination of an
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Cri__A Pl___ a,.40 /_
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Nondimensionar Distance Along Wall/Ramp

Fig. 5 Wall/ramp density distribution for regular reflection planar
shock diffraction, ramp angle = 60 deg, shock Much number = 4.71.

Fig. 3 Gri for regular reflection planar shock diffraction, ramp Supersonic

angle =60 deg,8shock Mach number 4 71

= 0 I 2
I Geometric .e,(._._:_/_.l

140 I Singu_]35 -- PresentStudy

[] Rat.++ ,+ [

_- 125

g /_ onic

o.

V C / C_fVortical Fig. 6 Grid for single module ogtve with geometric singularity on
r ;,Tn777_Tr_ Singularity shock, Mach number = 2.0, thickness = 0.1 chord.

115

I101 _

](_J_ ;+---*_ +.--,=-_++---+--,, -_--
2.00 ,4.00 6.00 mOO

Nondimensfor_t Distance Along Walt/Ramp

Fig. 4 Wall/ramp pressure dJslribulJonfor regular reflection planar
shock diffraction, ramp angle = 60 dR, shockMath number = 4.71.

initial flowfield for an arbitrary problem does not lend itself

to a general treatment. As a result, the initial solution for a
given flow configuration is treated as an independent problem

and is not part of the existing computer code.

Boundary Conditions

The algorithm described in the previous section applies to

an arbitrary module. Steps 8 and 14 require the application of

boundary condition procedures. The space limitation prevents
a discussion of these procedures here but such a discussion

may be found in Ref. 21.

Numerical Results

This section consists of two parts. The first deals with
problems which were solved with one module. These

problems provide an excellent test of the new geometry

procedures developed in this study. The second part deals with

a simple preliminary test of the multiple module capability for

a problem with two modules and one interface boundary.

Single Module

Numerical results for two problems requiring a single

module are presented. The results for a regular reflection

planar shock diffraction problem with a shock Mach number
of 4.71 and a ramp angle of 60 deg are shown in Figs. 3-5 and

compared with the results of Kutler and Shankar 2z in Figs. 4

and 5. Both the pressure and density distributions agree well

with the Kutler and Shankar solution. It is interesting to note

the behavior of the pressure profile for this problem as it

approaches the stagnation point. The profile tends toward a

zero slope when approaching along the stagnation streamline

but tends to spike as the stagnation point is approached along

the ramp. This problem is unique in that the grid never

reaches a steady-state solution. As r- o% x,--xlr and y,--ylr

due to the self-similarity that exists with respect to time. The

meaning of a converged grid in this case is when Ix,-x/rl
and ly, -y/rl are sufficiently small. Based on this definition,

the converged grid is shown in Fig. 3. Note that a vortical

singularity exists for this problem and is clearly shown in Fig.

5. This singularity was captured by the present finite dif-

ference algorithm. The computational domain for this

problem represents a four-sided physical region. The

supersonic inflow side of this region is an artificial boundary

and its validity is due to the two-dimensional flow region

which exists between the sonic line, shown in Fig. 3, and the

shock ramp intersection point. If the numerical solution were

required clear up to this intersection point, then the physical
domain would have only three sides. The next example

illustrates that such three-sided regions pose no serious threat

to the present method.

Consider a 10% thick pointed ogive body immersed in a

Mach 2 freestream. The converged grid is shown in Fig. 6,

thus illustrating a three-sided physical domain. This region is

mapped into a computational four-sided region by in-

troducing a "corner" point along the leading edge shock. The
Jacobian of the inverse transformation vanishes'a_ this ar-

tificial corner thus creating a geometric singularity. This type

of singularity is simply an additional corner point option in
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the existing computer code. This option is explained by

Hindman. 20 Solutions were also obtained with this singularity

introduced on the ogive surface and on the supersonic outflow

boundary instead of on the shock. No difficulties were en-

countered with any of these cases. Figure 7 illustrates the

ogive body surface pressure distribution along with the
numerical results of Schiff. 23 The comparison is good.

Special attention must now be directed to the grid structure in

the vicinity of the geometric singularity. The grid is extremely
nonorthogonal in this region. Some researchers 24.2s have

suggested in recent times that such nonorthogonality is un-

desirable from the standpoint of causing numerical dif-
ficulties or inaccuracies in the solution. This is certainly not

true for the pointed ogive problem presented here.

Two Modules

The ogive body just discussed also serves as a test case of a

double module problem with the trailing edge shock forming

the interface boundary between the two modules. Figure 8

illustrates the converged grid and both the leading edge and

trailing edge shocks. In this case, the aft region is three-sided

and a geometric singularity is introduced along the symmetry

boundary. The surface pressure distribution along the ogive

and the symmetry boundary is depicted in Fig. 9 and com-

pared to the shock capturing results of Schiff. 23 Generally

good agreement is observed where the comparison can be

made. The present solution, however, exhibits a slightly

higher estimate of the pressure just behind the trailing edge
shock. This reflects the fact that the shock slope is slightly

O.3O
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Fig. 9 Surface and aft symmetry boundary pressure coefficient for
double module ogive with aft region geometric singularity, Mach
number = 2.0, thickness = 0.1 chord.

larger than it should be at this point. This same behavior is

observed behind the leading edge shock and is due to some

slight inconsistency in the scheme used to treat this type of
corner point. The anomaly appearing near the center of the

aft region symmetry boundary is due to the existence of the
geometric singularity. This is contrary to the findings for the

three-sided region in the single module ogive case where no

anomaly appeared. A possible explanation of this follows.

The grid for the single module case (Fig. 6) appears to be

nearly symmetric in some sense with respect to the singular

point. Therefore, the truncation error in the solution, which is

weakly dependent upon the problem geometry, will be

essentially the same on either side of this point. Thus the

solution will not be forced by the geometric contribution to

the truncation error to exhibit a nonsmooth behavior through

the singularity. On the other hand, this symmetry does not
exist for the double module case as seen in Fig. 8. This causes

the truncation error on one side of the singular point to be

different from that on the other side which give_ rise to a weak

perturbation on the solution at points near the singularity

where the geometric variables are rapidly changing.

Concluding Remarks

A general method is presented for solving theunsteady two-

dimensional Euler equations on multiple flow regions with

arbitrarily-shaped and time-varying boundaries. The method
is applicable to problems with moving boundaries provided the

velocity of such movement can be determined or specified.

This includes problems with moving pistons, structural

deformations, accelerating bodies, moving or stationary

discontinuity surfaces such as shocks and slip surfaces, etc. In
the case of discontinuity surfaces, the scheme has the

capability of capturing any discontinuities whose approximate

shape and location is not known a priori provided the strength
of such discontinuities is not excessive.

The resulting computer code may be used to solve a wide

variety of two-dimensional flow problems. The multiple flow
region capability may be used to compute one flowfield with

multiple regions or it may be used to simultaneously perform

a parametric study of the solution for one flow problem.
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